Categories
Misc

Researchers Demo ‘Almost-Unlimited Size’ Brain Simulations Using GPUs

To improve brain simulation technology, a team of researchers from the University of Sussex developed a GPU-accelerated approach that can generate brain simulation models of almost-unlimited size.

To improve brain simulation technology, a team of researchers from the University of Sussex developed a GPU-accelerated approach that can generate brain simulation models of almost-unlimited size. 

Researchers Dr. James Knight and Thomas Nowotny from the University of Sussex’s School of Engineering and Informatics detailed the work in a paper published in Nature Computational Science journal. 

Using a GPU-accelerated system composed of an NVIDIA TITAN RTX GPU, the team created a cutting-edge model of a Macaque’s visual cortex with 4.13 x 106 neurons and 24.2 x 109 synaptic weights, a simulation that could previously only be done on a supercomputer. 

The neural network-based simulator uses the large amount of computational power of the GPU to procedurally generate connectivity and synaptic weights as spikes are triggered, without having to store connectivity data in memory, the researchers explained. 

“Large-scale simulations of spiking neural network models are an important tool for improving our understanding of the dynamics and ultimately the function of brains. However, even small mammals such as mice have on the order of 1 × 1012 synaptic connections meaning that simulations require several terabytes of data – an unrealistic memory requirement for a single desktop machine,” the researchers explained. 

Dr James Knight and Prof Thomas Nowotny of the University of Sussex School of Engineering and Informatics.

According to the team, the initialization of the model took six minutes, and the simulation of each biological second took 7.7 min in the ground state, and 8.4 min in the resting state – 35% less time than a previous supercomputer simulation. 

On the software side, the team used the CUDA-based GPU enhanced Neuronal Networks (GeNN) package. GeNN can also be used through external interfaces such as SpineML and SpineCreator, a Python interface (PyGeNN), and a Brian interface via Brian2GeNN.

Results of full-scale multi-area model simulation in ground and resting states

“This research is a game-changer for computational Neuroscience and AI researchers who can now simulate brain circuits on their local workstations, but it also allows people outside academia to turn their gaming PC into a supercomputer and run large neural networks.”

A pre-print of the paper is available on bioRxiv under open-access terms. The Nature Computational Science paper can be found here.

Read more>

Categories
Misc

Image Captioning with Visual Attention: TF, TPU, BLEU, BEAM

Anyone who is interested in deep learning image captioning has probably come across the Show, Attend and Tell paper. And anyone who is interested in implementing the architecture in TensorFlow has probably come across TensorFlow’s tutorial. @ratthachat provided a great notebook that extends TensorFlow’s tutorial with additions such as TPU training, Efficientnet encoder, and Glove embeddings. When I was interested in image captioning for my own custom dataset his tutorial was the best starting point I could find online. While working on my own dataset I needed to customize his notebook to add the features listed below. After doing so, I felt many others could benefit from the extensions so I am deciding to share it. Hope you all find it helpful.

  • Bleu Score metrics
  • Decoders
  • 1. Pure Sampling
  • 2. Top K Sampling
  • 3. Greedy Search
  • 4. Beam Search
  • Scheduled Sampling from https://arxiv.org/pdf/1506.03099.pdf
  • Early Stopping based off of validation bleu score

https://www.kaggle.com/kagglethomas88/flickr-image-captioning-tpu-tf2-glove-extended

submitted by /u/International_Fix_94
[visit reddit] [comments]

Categories
Misc

Latest from Stanford researchers: Embodied Intelligence via Learning and Evolution!

Latest from Stanford researchers: Embodied Intelligence via Learning and Evolution! submitted by /u/MLtinkerer
[visit reddit] [comments]
Categories
Misc

Inception Spotlight: DarwinAI Achieves 96% Screening Accuracy for COVID-19 with Diverse CT Dataset

NVIDIA Inception partner DarwinAI developed a new AI model to detect COVID-19 in CT scans with 96% accuracy across a wide and diverse number of scenarios. The model, COVID-Net CT-2, was built using a number of large and diverse datasets created over several months with the University of Waterloo and is publicly available on GitHub.

Last year, the startup launched an open source neural network for COVID-19 detection called COVID-Net. Their new model builds upon the initiative with a more robust model, trained on the largest quantity and diversity of multinational patient cases in research literature. Their academic study detailing the construction and validation of the model can be found here.

DarwinAI used an NVIDIA RTX 6000 for training their neural network and the NVIDIA Jetson Nano embedded AI platform to run their inference workloads.

“By building COVID-NET CT-2 from such rich and voluminous data, we’ve been able to achieve a new level of screening accuracy, with COVID-19 sensitivity and positive predictive value exceeding 96% across a wide and diverse number of scenarios,” said Sheldon Fernandez, CEO of Darwin-AI. 

“Our XAI platform was instrumental in the construction of the original COVID-Net model. For this version, we have engaged two senior radiologists in Canada to validate the way in which COVID-Net CT-2 makes its decisions. Much to our delight, both confirmed the decision-making process of COVID-Net CT-2 is consistent with their own expert interpretations,” Fernandez added.  “In addition to illustrating the emerging cooperation between our respective domains, their validation exemplifies the importance of our XAI technology in constructing transparent and trustworthy AI.” 

The largest of the datasets used to develop the new AI model consists of over 4,500 patients across 15 countries with 200,000 CT slices.

Both DarwinAI and NVIDIA are enabling researchers to build neural networks to fight COVID-19 with the help of open source AI and publicly available pre-trained models. Medical imaging AI models for detecting COVID-19 in X-rays and CTs can be accessed through DarwinAI’s COVID-Net Initiative and the NVIDIA COVID-19 NGC Catalog.

Learn more about how AI, accelerated computing, and GPU technology are contributing to the worldwide battle against the novel coronavirus in the COVID-19 Research Hub.

Categories
Misc

The Truck Stops Here: How AI Is Creating a New Kind of Commercial Vehicle

For many, the term “autonomous vehicles” conjures up images of self-driving cars. Autonomy, however, is transforming much more than personal transportation. Autonomous trucks are commercial vehicles that use AI to automate everything from shipping yard operations to long-haul deliveries. Due to industry pressures from rising delivery demand and driver shortages, as well as straightforward operational Read article >

The post The Truck Stops Here: How AI Is Creating a New Kind of Commercial Vehicle appeared first on The Official NVIDIA Blog.

Categories
Misc

Achievement Unlocked: Celebrating Year One of GeForce NOW

It’s a celebration, gamers! One year ago to the day we launched GeForce NOW, our cloud gaming service that transforms ordinary hardware into an extraordinarily powerful GeForce gaming PC. It’s the always-on gaming rig that never needs upgrading or patching and can instantly play your library of games. We’ve been blown away by the passion Read article >

The post Achievement Unlocked: Celebrating Year One of GeForce NOW appeared first on The Official NVIDIA Blog.

Categories
Misc

GFN Thursday — 30 Games Coming in February, 13 Available Today

Scientifically speaking, today is the best day of the week, because today is GFN Thursday. And that means more of the best PC games streaming right from the cloud across all of your devices. This is a special GFN Thursday, too — not just because it’s the first Thursday of the month, which means learning Read article >

The post GFN Thursday — 30 Games Coming in February, 13 Available Today appeared first on The Official NVIDIA Blog.

Categories
Misc

Simple audio classification with torch

This article translates Daniel Falbel’s ‘Simple Audio Classification’ article from tensorflow/keras to torch/torchaudio. The main goal is to introduce torchaudio and illustrate its contributions to the torch ecosystem. Here, we focus on a popular dataset, the audio loader and the spectrogram transformer. An interesting side product is the parallel between torch and tensorflow, showing sometimes the differences, sometimes the similarities between them.

library(torch)
library(torchaudio)

Downloading and Importing

torchaudio has the speechcommand_dataset built in. It filters out background_noise by default and lets us choose between versions v0.01 and v0.02.

# set an existing folder here to cache the dataset
DATASETS_PATH <- "~/datasets/"

# 1.4GB download
df <- speechcommand_dataset(
  root = DATASETS_PATH, 
  url = "speech_commands_v0.01",
  download = TRUE
)

# expect folder: _background_noise_
df$EXCEPT_FOLDER
# [1] "_background_noise_"

# number of audio files
length(df)
# [1] 64721

# a sample
sample <- df[1]

sample$waveform[, 1:10]
torch_tensor
0.0001 *
 0.9155  0.3052  1.8311  1.8311 -0.3052  0.3052  2.4414  0.9155 -0.9155 -0.6104
[ CPUFloatType{1,10} ]
sample$sample_rate
# 16000
sample$label
# bed

plot(sample$waveform[1], type = "l", col = "royalblue", main = sample$label)
A sample waveform for a 'bed'.

(#fig:unnamed-chunk-4)A sample waveform for a ‘bed’.

Classes

df$classes
 [1] "bed"    "bird"   "cat"    "dog"    "down"   "eight"  "five"  
 [8] "four"   "go"     "happy"  "house"  "left"   "marvin" "nine"  
[15] "no"     "off"    "on"     "one"    "right"  "seven"  "sheila"
[22] "six"    "stop"   "three"  "tree"   "two"    "up"     "wow"   
[29] "yes"    "zero"  

Generator Dataloader

torch::dataloader has the same task as data_generator defined in the original article. It is responsible for preparing batches – including shuffling, padding, one-hot encoding, etc. – and for taking care of parallelism / device I/O orchestration.

In torch we do this by passing the train/test subset to torch::dataloader and encapsulating all the batch setup logic inside a collate_fn() function.

set.seed(6)
id_train <- sample(length(df), size = 0.7*length(df))
id_test <- setdiff(seq_len(length(df)), id_train)
# subsets

train_subset <- torch::dataset_subset(df, id_train)
test_subset <- torch::dataset_subset(df, id_test)

At this point, dataloader(train_subset) would not work because the samples are not padded. So we need to build our own collate_fn() with the padding strategy.

I suggest using the following approach when implementing the collate_fn():

  1. begin with collate_fn <- function(batch) browser().
  2. instantiate dataloader with the collate_fn()
  3. create an environment by calling enumerate(dataloader) so you can ask to retrieve a batch from dataloader.
  4. run environment[[1]][[1]]. Now you should be sent inside collate_fn() with access to batch input object.
  5. build the logic.
collate_fn <- function(batch) {
  browser()
}

ds_train <- dataloader(
  train_subset, 
  batch_size = 32, 
  shuffle = TRUE, 
  collate_fn = collate_fn
)

ds_train_env <- enumerate(ds_train)
ds_train_env[[1]][[1]]

The final collate_fn() pads the waveform to length 16001 and then stacks everything up together. At this point there are no spectrograms yet. We going to make spectrogram transformation a part of model architecture.

pad_sequence <- function(batch) {
    # Make all tensors in a batch the same length by padding with zeros
    batch <- sapply(batch, function(x) (x$t()))
    batch <- torch::nn_utils_rnn_pad_sequence(batch, batch_first = TRUE, padding_value = 0.)
    return(batch$permute(c(1, 3, 2)))
  }

# Final collate_fn
collate_fn <- function(batch) {
 # Input structure:
 # list of 32 lists: list(waveform, sample_rate, label, speaker_id, utterance_number)
 # Transpose it
 batch <- purrr::transpose(batch)
 tensors <- batch$waveform
 targets <- batch$label_index

 # Group the list of tensors into a batched tensor
 tensors <- pad_sequence(tensors)
 
 # target encoding
 targets <- torch::torch_stack(targets)

 list(tensors = tensors, targets = targets) # (64, 1, 16001)
}

Batch structure is:

  • batch[[1]]: waveforms – tensor with dimension (32, 1, 16001)
  • batch[[2]]: targets – tensor with dimension (32, 1)

Also, torchaudio comes with 3 loaders, av_loader, tuner_loader, and audiofile_loader- more to come. set_audio_backend() is used to set one of them as the audio loader. Their performances differ based on audio format (mp3 or wav). There is no perfect world yet: tuner_loader is best for mp3, audiofile_loader is best for wav, but neither of them has the option of partially loading a sample from an audio file without bringing all the data into memory first.

For a given audio backend we need pass it to each worker through worker_init_fn() argument.

ds_train <- dataloader(
  train_subset, 
  batch_size = 128, 
  shuffle = TRUE, 
  collate_fn = collate_fn,
  num_workers = 16,
  worker_init_fn = function(.) {torchaudio::set_audio_backend("audiofile_loader")},
  worker_globals = c("pad_sequence") # pad_sequence is needed for collect_fn
)

ds_test <- dataloader(
  test_subset, 
  batch_size = 64, 
  shuffle = FALSE, 
  collate_fn = collate_fn,
  num_workers = 8,
  worker_globals = c("pad_sequence") # pad_sequence is needed for collect_fn
)

Model definition

Instead of keras::keras_model_sequential(), we are going to define a torch::nn_module(). As referenced by the original article, the model is based on this architecture for MNIST from this tutorial, and I’ll call it ‘DanielNN’.

dan_nn <- torch::nn_module(
  "DanielNN",
  
  initialize = function(
    window_size_ms = 30, 
    window_stride_ms = 10
  ) {
    
    # spectrogram spec
    window_size <- as.integer(16000*window_size_ms/1000)
    stride <- as.integer(16000*window_stride_ms/1000)
    fft_size <- as.integer(2^trunc(log(window_size, 2) + 1))
    n_chunks <- length(seq(0, 16000, stride))
    
    self$spectrogram <- torchaudio::transform_spectrogram(
      n_fft = fft_size, 
      win_length = window_size, 
      hop_length = stride, 
      normalized = TRUE, 
      power = 2
    )
    
    # convs 2D
    self$conv1 <- torch::nn_conv2d(in_channels = 1, out_channels = 32, kernel_size = c(3,3))
    self$conv2 <- torch::nn_conv2d(in_channels = 32, out_channels = 64, kernel_size = c(3,3))
    self$conv3 <- torch::nn_conv2d(in_channels = 64, out_channels = 128, kernel_size = c(3,3))
    self$conv4 <- torch::nn_conv2d(in_channels = 128, out_channels = 256, kernel_size = c(3,3))
    
    # denses
    self$dense1 <- torch::nn_linear(in_features = 14336, out_features = 128)
    self$dense2 <- torch::nn_linear(in_features = 128, out_features = 30)
  },
  
  forward = function(x) {
    x %>% # (64, 1, 16001)
      self$spectrogram() %>% # (64, 1, 257, 101)
      torch::torch_add(0.01) %>%
      torch::torch_log() %>%
      self$conv1() %>%
      torch::nnf_relu() %>%
      torch::nnf_max_pool2d(kernel_size = c(2,2)) %>%
      
      self$conv2() %>%
      torch::nnf_relu() %>%
      torch::nnf_max_pool2d(kernel_size = c(2,2)) %>%
      
      self$conv3() %>%
      torch::nnf_relu() %>%
      torch::nnf_max_pool2d(kernel_size = c(2,2)) %>%
      
      self$conv4() %>%
      torch::nnf_relu() %>%
      torch::nnf_max_pool2d(kernel_size = c(2,2)) %>%
      
      torch::nnf_dropout(p = 0.25) %>%
      torch::torch_flatten(start_dim = 2) %>%
      
      self$dense1() %>%
      torch::nnf_relu() %>%
      torch::nnf_dropout(p = 0.5) %>%
      self$dense2() 
  }
)

model <- dan_nn()


device <- torch::torch_device(if(torch::cuda_is_available()) "cuda" else "cpu")
model$to(device = device)

print(model)
An `nn_module` containing 2,226,846 parameters.

── Modules ──────────────────────────────────────────────────────
● spectrogram: <Spectrogram> #0 parameters
● conv1: <nn_conv2d> #320 parameters
● conv2: <nn_conv2d> #18,496 parameters
● conv3: <nn_conv2d> #73,856 parameters
● conv4: <nn_conv2d> #295,168 parameters
● dense1: <nn_linear> #1,835,136 parameters
● dense2: <nn_linear> #3,870 parameters

Model fitting

Unlike in tensorflow, there is no model %>% compile(…) step in torch, so we are going to set loss criterion, optimizer strategy and evaluation metrics explicitly in the training loop.

loss_criterion <- torch::nn_cross_entropy_loss()
optimizer <- torch::optim_adadelta(model$parameters, rho = 0.95, eps = 1e-7)
metrics <- list(acc = yardstick::accuracy_vec)

Training loop

library(glue)
library(progress)

pred_to_r <- function(x) {
  classes <- factor(df$classes)
  classes[as.numeric(x$to(device = "cpu"))]
}

set_progress_bar <- function(total) {
  progress_bar$new(
    total = total, clear = FALSE, width = 70,
    format = ":current/:total [:bar] - :elapsed - loss: :loss - acc: :acc"
  )
}
epochs <- 20
losses <- c()
accs <- c()

for(epoch in seq_len(epochs)) {
  pb <- set_progress_bar(length(ds_train))
  pb$message(glue("Epoch {epoch}/{epochs}"))
  coro::loop(for(batch in ds_train) {
    optimizer$zero_grad()
    predictions <- model(batch[[1]]$to(device = device))
    targets <- batch[[2]]$to(device = device)
    loss <- loss_criterion(predictions, targets)
    loss$backward()
    optimizer$step()
    
    # eval reports
    prediction_r <- pred_to_r(predictions$argmax(dim = 2))
    targets_r <- pred_to_r(targets)
    acc <- metrics$acc(targets_r, prediction_r)
    accs <- c(accs, acc)
    loss_r <- as.numeric(loss$item())
    losses <- c(losses, loss_r)
    
    pb$tick(tokens = list(loss = round(mean(losses), 4), acc = round(mean(accs), 4)))
  })
}



# test
predictions_r <- c()
targets_r <- c()
coro::loop(for(batch_test in ds_test) {
  predictions <- model(batch_test[[1]]$to(device = device))
  targets <- batch_test[[2]]$to(device = device)
  predictions_r <- c(predictions_r, pred_to_r(predictions$argmax(dim = 2)))
  targets_r <- c(targets_r, pred_to_r(targets))
})
val_acc <- metrics$acc(factor(targets_r, levels = 1:30), factor(predictions_r, levels = 1:30))
cat(glue("val_acc: {val_acc}nn"))
Epoch 1/20                                                            
[W SpectralOps.cpp:590] Warning: The function torch.rfft is deprecated and will be removed in a future PyTorch release. Use the new torch.fft module functions, instead, by importing torch.fft and calling torch.fft.fft or torch.fft.rfft. (function operator())
354/354 [=========================] -  1m - loss: 2.6102 - acc: 0.2333
Epoch 2/20                                                            
354/354 [=========================] -  1m - loss: 1.9779 - acc: 0.4138
Epoch 3/20                                                            
354/354 [============================] -  1m - loss: 1.62 - acc: 0.519
Epoch 4/20                                                            
354/354 [=========================] -  1m - loss: 1.3926 - acc: 0.5859
Epoch 5/20                                                            
354/354 [==========================] -  1m - loss: 1.2334 - acc: 0.633
Epoch 6/20                                                            
354/354 [=========================] -  1m - loss: 1.1135 - acc: 0.6685
Epoch 7/20                                                            
354/354 [=========================] -  1m - loss: 1.0199 - acc: 0.6961
Epoch 8/20                                                            
354/354 [=========================] -  1m - loss: 0.9444 - acc: 0.7181
Epoch 9/20                                                            
354/354 [=========================] -  1m - loss: 0.8816 - acc: 0.7365
Epoch 10/20                                                           
354/354 [=========================] -  1m - loss: 0.8278 - acc: 0.7524
Epoch 11/20                                                           
354/354 [=========================] -  1m - loss: 0.7818 - acc: 0.7659
Epoch 12/20                                                           
354/354 [=========================] -  1m - loss: 0.7413 - acc: 0.7778
Epoch 13/20                                                           
354/354 [=========================] -  1m - loss: 0.7064 - acc: 0.7881
Epoch 14/20                                                           
354/354 [=========================] -  1m - loss: 0.6751 - acc: 0.7974
Epoch 15/20                                                           
354/354 [=========================] -  1m - loss: 0.6469 - acc: 0.8058
Epoch 16/20                                                           
354/354 [=========================] -  1m - loss: 0.6216 - acc: 0.8133
Epoch 17/20                                                           
354/354 [=========================] -  1m - loss: 0.5985 - acc: 0.8202
Epoch 18/20                                                           
354/354 [=========================] -  1m - loss: 0.5774 - acc: 0.8263
Epoch 19/20                                                           
354/354 [==========================] -  1m - loss: 0.5582 - acc: 0.832
Epoch 20/20                                                           
354/354 [=========================] -  1m - loss: 0.5403 - acc: 0.8374
val_acc: 0.876705979296493

Making predictions

We already have all predictions calculated for test_subset, let’s recreate the alluvial plot from the original article.

library(dplyr)
library(alluvial)
df_validation <- data.frame(
  pred_class = df$classes[predictions_r],
  class = df$classes[targets_r]
)
x <-  df_validation %>%
  mutate(correct = pred_class == class) %>%
  count(pred_class, class, correct)

alluvial(
  x %>% select(class, pred_class),
  freq = x$n,
  col = ifelse(x$correct, "lightblue", "red"),
  border = ifelse(x$correct, "lightblue", "red"),
  alpha = 0.6,
  hide = x$n < 20
)
Model performance: true labels <--> predicted labels.

(#fig:unnamed-chunk-15)Model performance: true labels <–> predicted labels.

Model accuracy is 87,7%, somewhat worse than tensorflow version from the original post. Nevertheless, all conclusions from original post still hold.

Categories
Misc

Latest from KDnuggets: Find code implementation for any AI/ML paper using this new chrome extension

submitted by /u/MLtinkerer
[visit reddit] [comments]

Categories
Misc

Latest from google researchers: state of the art in video stabilization!

Latest from google researchers: state of the art in video stabilization! submitted by /u/MLtinkerer
[visit reddit] [comments]