Categories
Misc

Can NOT fit LSTM layer with default parameters?

I have a problem using LSTM from keras. When I try to train the model, the training stops at “Epoch 1/50” and never progresses. The program just stops with a Process finished code and shows no error messages regarding the missing training.

​

The problem only occurs when I try to use LSTM’s default parameters. So if I for example give a new activation argument with such as “relu” then it works fine?

​

It seems to be on my local computer the problem pertains as the code can run on Colab with and without default parameters, but for some reason I can not be allowed to train the model at all. This is especially frustrating as there are no error messages displayed.

​

I really hope there is a skilled person who can help or guide me in the right direction with this problem.

Thanks πŸ™‚

​

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, LSTM, InputLayer

​

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train / 255

y_train = y_train / 255

​

model = Sequential()

model.add(InputLayer((x_train.shape[1:])))

model.add(LSTM(32)) # <— the problem occurs here

model.add(Dense(10, activation=’softmax’))

opt = tf.keras.optimizers.Adam(learning_rate=1e-3, decay=1e-5)

model.compile( loss=’sparse_categorical_crossentropy’, optimizer=opt, metrics=[‘accuracy’] )

model.fit(x_train, y_train, epochs=50, validation_data=(x_test, y_test), verbose=’auto’)

print(“Model is trained.”)

​

​

The output from my console:

2021-08-27 10:20:22.799484: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cudart64_110.dll 2021-08-27 10:20:26.443509: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library nvcuda.dll 2021-08-27 10:20:26.488972: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:01:00.0 name: NVIDIA GeForce RTX 2060 computeCapability: 7.5 coreClock: 1.2GHz coreCount: 30 deviceMemorySize: 6.00GiB deviceMemoryBandwidth: 245.91GiB/s 2021-08-27 10:20:26.489580: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cudart64_110.dll 2021-08-27 10:20:26.532650: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cublas64_11.dll 2021-08-27 10:20:26.533109: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cublasLt64_11.dll 2021-08-27 10:20:26.559639: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cufft64_10.dll 2021-08-27 10:20:26.565224: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library curand64_10.dll 2021-08-27 10:20:26.637251: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cusolver64_11.dll 2021-08-27 10:20:26.660612: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cusparse64_11.dll 2021-08-27 10:20:26.661815: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cudnn64_8.dll 2021-08-27 10:20:26.662201: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2021-08-27 10:20:26.662770: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2 To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2021-08-27 10:20:26.664656: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:01:00.0 name: NVIDIA GeForce RTX 2060 computeCapability: 7.5 coreClock: 1.2GHz coreCount: 30 deviceMemorySize: 6.00GiB deviceMemoryBandwidth: 245.91GiB/s 2021-08-27 10:20:26.665660: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2021-08-27 10:20:27.284225: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix: 2021-08-27 10:20:27.284551: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264] 0 2021-08-27 10:20:27.284738: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0: N 2021-08-27 10:20:27.285152: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 3961 MB memory) -> physical GPU (device: 0, name: NVIDIA GeForce RTX 2060, pci bus id: 0000:01:00.0, compute capability: 7.5) 2021-08-27 10:20:28.198186: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2) Epoch 1/50 2021-08-27 10:20:29.513381: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library cudnn64_8.dll Process finished with exit code -1073740791 (0xC0000409) 

​

  • TensorFlow version: 2.5.0
  • Python version: 3.9.6

​

submitted by /u/j_whoooo
[visit reddit] [comments]

Leave a Reply

Your email address will not be published. Required fields are marked *